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Informal Takeaways

Networking Research: Is it all solved?
— Glimpse into how Science R&E networks work

Can machine (or deep) learning help with some network challenges?
— Supervised, unsupervised and reinforcement learning*

What are the challenges?
— Data issues

— Experimental testbeds
— Real-world deployments

Apart from Networks, what else are we exploring?



Networking: A closer look



Network is the nervous system for
Science at Large-scale

Scientist High-speed storage
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Advanced Networking
designed for

Science Experiments III
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eal-time analytics
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Borrowed from E. Dart

Example Application
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Borrowed from C. Guok

Current Science Network Trends

62% yearly

traffic
growth

=—Actual

—Exponential regression with 12 month projection
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Wide area Networks (WAN) for Science:
What challenges do they see?
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Resources are often underutilized

100 ~in = ou Capped at
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* Networks are designed to be resilient 000
* Traffic is highly variable and ‘bursty’
(big versus small transfers) ESnet Year 2019
* Under-utilized resources usage on 100GB
. links
* Flow Congestion leads to packet loss
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Transfer Performance can be Fragile

Science uses Transmission Control Protocol (TCP) to send data

95% of science traffic uses TCP
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Different TCP algorithms for Performance

Cubic BBR
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Anomaly Type

Each TCP uses complex algorithms to optimize performance (slow down
or quicken data sending)

Examples include video buffering on Youtube, VOIP (zoom) or big file
transfers in few hours (Astronomy/physics from LHC)
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ML (Deep) learning to help

@ ESnet



Uses of Deep Learning

Objective:
— Learning y= f(x)
x1 S
) Action 1
— —
X3
Action 2
x4

‘ Train neural network to minimize loss function .
L

(find the best weights for the neurons)

<

@ ESnet
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Compared to general Machine Learning

Trained to recognize cats Trained to play games

Deep learning introduces ‘data-driven learning’ to
build bespoke solutions

@ ESnet
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ML and Networking relationship

Used in many specific applications

— Security (to identify anomalies)

— Classify traffic or user behavior on network
— Recognize problem area

But a lot of these are on small-scale networks and work in simulated
environments

— Problems with robustness of ML
— Trusting the ML

— Understanding how it works

— And more...
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Supervised Learning

When Labelled Data is Available

Learning to recognize the labels
Classification, object detection, anomaly detection

Works very well if we can identify clear class boundaries

®
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*S. Campbell, F. Bannatwala

Unsupervised Learning
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Reinforcement learning (RL)*
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When NO data is available
— Learn via trial and error

— Interactions with the environment

Agent views the state of the State s
environment and chooses an action

Each action, agent gets a reward

Over time, agent learns optimal
actions that give best rewards and
what to do next

Agent

Reward

Environment

Actiion a



Mapping Deep RL to Networks

@ ESnet



RL for Traffic Engineering

* Link-state (Dijkstra)-OSPF
— Shortest possible route
— Complete view of network topology

— Central traffic engineering ;

* Distance-vector (Bellman-Ford)-RIP
— Routers only know their neighbors
— Shortest possible route to destination via iterative calculations

— Each node updates routing tables

* New opportunities with Software defined networking + RL
— RL decisions to determining best routes

@ ESnet
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Network ‘Self’ learns to reduce Congestion

Too many flows |

Congestion Packet loss
on same path

Predict if congestion
will occur

™~ Divert traffic to
| underused paths

o
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But first ...... Working with Dynamic Systems

Supervised and Unsupervised learning:
— Good to find patterns in data sets

Reinforcement: Teach systems how to perform (i.e. games, controlling
systems, dynamic systems)

0.5
1.5 .
4 1.5 Possible sequence of events:

Eat Run Eat-Run-Sleep

1.0 .
Run-Sleep-Eat

2-5 2-0

1.5 ' v 0.8
Sleep Total Reward = ro_q + Moy + Feg ot o Hly
Current lives as 0.8 Train yourself to get the max reward

Markov decision -
’
process & ESnet
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Useful in Games: Cartpole Example

Inverted pendulum problem (control
theory)

Goal: balance the pole upright

Reward = score

Asent Action (2)= Environ
gen move left, ment
move right

State (4) = Cart position, Cart
velocity, Pole angle, Pole
velocity

22




Cartpole (2): Learning state-action pairs
* Learning the Q function (value function or Bellman equation):

Q(s,a) = R(s,a) + ymaxQ(s', a’))

* When state and action space explodes, replace with a neural network

state | action | value
state0 Move left 10 :>

statel Move right 2

DQN solve
(state, action, reward, state_next)

@ ESnet
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Episodes and Experience

24

At time t,

— Agent sees environment state, s, € S

— Agent chooses an action to perform, a € A(s,).

— As a consequence of its action, the environment changes its state, s,
— Agent receives a reward or payoff, r..

Episodic learning over time
Qi(s,a) = Qi—1(s,a) + a(R(s,a) + ymaxQ(s',a") — Qi—1(s,a))

Agents keep ‘experience-replay’ buffer to remember past actions

Hyperparameter optimization™:

— Alpha: Learning rate, how quickly can agent learn

— Gamma: prioritize immediate rewards versus future rewards
— Epsilon: exploration factor

* Upcoming paper on effect of hyperparameters on RL &
)
o

N,

ESnet



Different RL algorithms

Technique* model policy Action space
Q-learning free Off-policy discrete

DQN free Off-policy discrete
DDPG free Off-policy continuous
TRPO free Off-policy continuous
A3C free Off-policy continuous

observations
discrete
continuous
continuous
continuous

continuous

operators
Q-value
Q-value
Q-value
advantage

advantage

Most are developed in robotics and games (All work in simulated world)

No real-world deployments

25
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Challenge:
Conversion to a Learning Problem

>
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Neural Network Learning a (WAN) Network
Reward T

Agent

Take action dt

Network

Controller .

Value or Policy learning
mg(als)

Observe state

St

Environment

|

Network
State

|

.. : T
Goal: maximize the cumulative reward Z ¢

Each time step, RL agent collects states, generates an
action and updates policy based on reward

27
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Convert to Learning problem

28

Networks have multiple paths between source and destinations

Convert the problem into Markov decision process:
— (S, A, R, P), where s € S set of states, a € A set of actions, R(s, a, s’)
represents reward and probability P for executing action in state s.

19:21:23:12

=
=

Source |IP Destination IP
19:21:12:12 10:29:18:18

RL agent at source: Chooses best path to send flows
— Trial-and-error to learn “optimal” paths: not just shortest path

— Once learned, it knows which one to choose for arriving flow &%
5 Q@ ESnet



Links with Software Defined Networks (SDN)

RL Agent

Telemetry

@ ESnet
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Designing the Neural Network

State Action

Predict congestion

Move traffic to

Current loss on links path A

Move traffic to
path B

Network utilization

File transfer time

@ ESnet



Challenge:
Designing the Training Environment

@ ESnet



Working with Network Emulators

32

Mininet, NS2, CloudSim, examples of simulating network behavior
Real-world is very different from simulations/emulator

— Noise,

— lack of data,

— too diverse data tools,

— connection challenges

Emulators not designed to test ML advances

Do not scale to our problem



Designing our own Network Gym: NetGame

% Controllers
R

Agent-based modelling
Simulating traffic with complex needs

Scaling network up dynamically (complex scenarios, Multi-RL)
Link in real data sets to fuel our simulation

More control to understand why ML decisions are being made

@ ESnet
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ninet Simulation

Deploying RL in

File Edit View Search Terminal Tabs

. File Edit Run Help
State: Current ,
- controller@controller-virt... x | c
packet in 6 76:b9:5d:2a:9b:73 8.

network utilization 13 L Eno tErn

o

Action: Path to take ST
Reward: Flow ' a2 e

:cb:fd:
:5d:2a:

completion time . S b
Optimize: best path

controller@controller-VirtualBox: ~/Music/deeproute-gym/tests

File Edit View Search Terminal Help
Taking predicted action 1
Taking random action ©

Taking random action 2

Taking predicted action
Taking random action 1
Taking predicted action
Taking predicted action
Taking random action 2
Taking predicted action
Taking random action 3
Taking predicted action
Taking random action @
predicted action
predicted action
predicted action
random action 1
predicted action
random action 3

Ibnl

*DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning, MLN'2019
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Challenge:
Working with Dynamic Data

@ ESnet



*S Sun, Summer Intern

Networks Change

Batch size = 50, Learning Rate = 1e-05

2 10 Alink disappear

Environment Agent g
Learn the -
underlying
. 0.06 1
b@haVIOr T 5 > 5 - =
Episodes

Can the DRL Agent adapt?

Model Predictive Control to learn underlying physical laws in the system
Data > underlying laws > Agent

@ ESnet
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Traffic patterns Constantly Change

* Correlation of traffic over year 2019

Year 2019 Full One-year

= * No underlying patterns, seasonality

because science transfers are erratic

* LSTM models were better to learn
short term predictions. Long term
patterns don’t affect us.

> Feed into graph neural networks to
enhance predictions

@ ESnet
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Example: Predicting Congestion Ahead of Time
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Dynamic Diffusion convolutional

recurrent neural network
(D-DCRNN)
Vg
1 R~
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With Real-time Data
Loss - Perfsonar
Traffic statistics - SNMP
Logs — NetFlow

4

\&

& ESnhet



NetPredict for Just-in-Time Flows
(Linked with ESnet portal)

*SC19 Demo Network Research Exhibitions

 Deployed on Google Cloud
Platform
— Different models can run
at the same time to
compute least congested
paths
— Estimates transfer

completion time —RC —5:60pm .
* Trust dashboard i / \
— Real-time ML | : | —_ s
performance

Showing predicted best paths for LENL to WASH

LBNL

WASH

— Build engineer’s
confidence in predictions
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* P. Balaprakash (ANL)

Graph neural networks to improve predictons

=

|\ /gf
T~ /\n/

WAN Network Topology

ﬁ)ynamic Diffusion convolutionaN

recurrent neural network
(D-DCRNN)

  ;.; SRR | ‘ \\
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() /\n
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05
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05 | ' i l l
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1.0

compared to simple LSTM

approaches ~1.0

¥ 0.0 D I ' I
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- ! . i
N TR
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*Data-driven Learning to Predict WAN Network Traffic, SNTA’20
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Challenge:
Deploying Theory to Practical

@ ESnet



G)'@me|90n

Building Our Own Topology

NetGame A lot of our time is

controller consumed by building
real networks to test
our algorithms

/ Chicago

e e

Chicago

®

Texas

=

Washington
*  ESnet and other network data
S
* lack of labelled data @ ESnet
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Gathering data, OpenStack nodes ...

Displaying 5 items

O

O

Instance Name

3(

ONAR-no

Displaying 5 items

43

e

Image Name

CC-CentOS7

CC-Ubuntu16.04

CC-Ubuntu16.04

CC-Ubuntu16.04

CC-Ubuntu16.04

IP Address

192.168.100.16, 192.5.87.157

192.168.100.18, 192.5.87.38, 192.168.100.13

192.168.100.19, 192.5.87.87

192.168.100.11, 192.5.87.178

192.168.100.17, 192.168.100.15, 192.5.87.186

Flavor

al

al

al

al

al

Key Pair

uc-mcén-key

uc-mcdén-key

uc-mcén-key

uc-mcén-key

uc-mcén-key

Status

Active

Active

Active

Active

Shutoff

Availability Zone

nova

nova

nova

nova

nova

sharednet1

Task

None

None

None

None

None

Power State

Running

Running

Running

Running

Shut Down

SRC-1-node

c,mmeleOn

NetNodeUC

Age

2 days, 3 hours

6 days, 4 hours

6 days, 20 hours

6 days, 21 hours

6 days, 21 hours

Faulty node

Actions

Attach Interface

Attach Interface

Attach Interface

Attach Interface

Start Instance

v



Challenge:
RL is promising to other Sciences too
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DQN (RL) for routing traffic

Optimization problems in
dynamic systems

Not use Djikstra’s shortest

possible route finding ‘

o

HPC load balancing s
i
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DRL applicable in many areas

Replace the state and action to challenges in other
dynamic systems

Using policy
Reinforcement Te(s, a)
Learning agent

Deep Neural Network

O
XS ‘
4\\v vll; . ‘W
RONS
KNS XA
LAKA 0 A‘v’i“v

Action: a:=(p; (F,))

State s Take action a

parameter 6

Reward = Z(T} /2T & ESnet
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* Q. Du (ATAP)

DRL for 8-way Laser combining

System self-learns to find a concentrated
/ beam

Comparing RL approaches for real-time
control
(b) Phase controlled

(a) Free running

State § XK Action
ALe Sn O Selection |

Working with physicists to deploy DRL on
GPUs/FPGAs for high-speed control

1.0

ol |

Target Intensity
e ’ M W/ M) ?«
s os / 5 /b/ 1 A VAq , o W W/ %y
Bl N5/ oM b |
& J y w /4‘/ W
[+ _/v “ w/
, 0.4 1 W‘(\ 1“/ '
AN
| /
0.2 g f/ k —— A2C algorithm
q | PPO algorithm
| —— DDPG
0.0 0 200 400 600
47

800 1000
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*S. Touzani (ETA)

DRL for FLEXLAB*

* DRL to optimize battery life and
building comfort

* Hyperparameter tuning for real
Flexlab deploys for temperature
and cooling chambers

* Working with Energy
technologists and experts

Temperature
variability with

” di t algorith
ifferent algorithms Q ESn et
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Summary:
Building our own Monitors/Controllers for optimizing
traffic engineering

Deploying algorithms to work with real-time data

Building our own Cloud data management systems that communicate with
our simulators to train offline and online models

We have learned RL is a strong approach, but needs tweaking to problem to
be beneficial that traditional approaches
Working with Engineers/Domain scientists:

— Deploying controllers in testbeds
— Cost of processing data, training models and model reliability

4
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DAPHNE Team* (Deep and Autonomous High-Performance Networks)

* With ESnet engineers and SDM Collaborators ’ “
- TS DM

@ ESnet




https://sites.google.com/lbl.gov/daphne

* mkiran@es.net

Feel free to reach out with questions/interests!

@ ESnet
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https://sites.google.com/lbl.gov/daphne/home?

